Radical and Ionic Reactions of (Benzoylmethyl)mercurials¹

Glen A. Russell,* Shekhar V. Kulkarni, and Rajive K. Khanna[†]

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received June 22, 1989

Photolysis of PhCOCH₂HgCl or (PhCOCH₂)₂Hg yields benzoylmethyl radicals which can be trapped by anions such as Me₂C=NO₂, RC(CO₂Et)₂, RC(O)=CH₂ or by other electron-rich systems such as (RO)₃P, Nmethylpyrrole, enamines, or norbornene. Electron transfer from the adduct radicals to the mercurial yields PhCOCH₂A from the anions A⁻, PhCOCH₂P(O)(OR)₂ from $P(OR)_3$, and the phenacyl derivative from Nmethylpyrrole or enamines. Easily oxidized anions such as PhCOCPh₂⁻ or PhC(CH₃)=NO₂⁻ react with PhCOCH₂. by electron transfer to yield the dimer derived from the anion. Addition of PhCOCH2 to norbornene yields a substituted 3-benzoyl propyl radical which cyclizes at the ortho position of the benzoyl group to give the α -tetralone derivative.

Alkylmercury halides undergo photostimulated chain reactions of the S_{RN} -type with anions such as $CH_2 = NO_2^$ or $PhC(O^{-})=CH_2$ in which the adduct radical anions, e.g., t-BuCH₂NO₂^{•-} or t-BuCH₂C(O⁻)Ph, continue the chain by electron transfer to the alkylmercurial, a process which regenerates the alkyl radical.²⁻⁵ In general, the rate of attack by the nucleophilic (electron-donating) tert-butyl radical decreases with electron-supplying substituents at the resonance-stabilized carbanionic center of the anion.^{4,5} In a similar fashion, the reactivity of a variety of alkenes and alkynes toward the tert-butyl radical is greater with electron-withdrawing substituents than with electronsupplying substituents.⁶

Some examples of S_{RN} -type reactions (substitutions) have been observed in the photostimulated reactions of t-BuHgCl with neutral molecules, e.g. CH₂=C- $(C_6H_4OMe-p)_2$.^{7,8} However, to form an easily oxidized adduct radical capable of transferring an electron to RHgCl, an electron-rich substrate is required. In many cases such substrates have a low reactivity toward nucleophilic alkyl radicals because of the polar effect in radical addition reactions. [The polar effect, originally recognized in copolymerization reactions,⁹ has been extended to numerous radical addition reactions of substituted alkenes¹⁰ and heteroaromatics¹¹ of synthetic value. The rates and products of these and other radical reactions are often controlled by polar contributions to early transition states.¹²]

In the hope of extending the scope of S_{RN} -type substitutions using organomercurials as the radical source, we have investigated the photostimulated radical reactions of the (benzoylmethyl)mercurials since the benzoylmethyl radical is an electrophilic radical¹³ and should add readily to electron-rich substrates. As predicted, the nucleophilic *tert*-butyl and electrophilic benzoylmethyl radicals display vastly different reactivities toward electron-rich substrates such as trialkyl phosphites, enamines, or *N*-methylpyrrole. These substrates have little reactivity toward t-Bu[•] but readily trap PhCOCH₂• to yield adduct radicals capable of transferring an electron to PhCOCH₂HgCl or $(PhCOCH_2)_2$ Hg and thereby regenerate $PhCOCH_2^{\bullet}$.

Addition of PhCOCH₂[•] to norbornene yields a carboncentered radical which would not be expected to undergo electron transfer to PhCOCH₂HgCl. However, a chain reaction involving electron transfer can still be achieved by cyclization followed by the loss of a proton to yield an α -tetralone ketyl. Since the ketyl is a powerful reducing species (E° $\,\sim\,-1.7$ v) electron transfer to the mercurial occurs readily with regeneration of PhCOCH₂.

Table I. Photostimulated Reaction Products between PhCOCH₂HgCl and Various Nucleophiles^a

nucleophile ^b	time, h	products (% yield) ^c
Me ₂ C=NO ₂ ⁻	2	PhCOCH ₂ CMe ₂ NO ₂ (22);
		$PhCOCH = CMe_2$ (65)
MeCH=NO2 ⁻	4	$PhCOCH_2CHMeNO_2$ (32);
		$PhCOCH = C(Me)NO_2(4)$
$H_2C = NO_2^-$	5	PhCOCH ₂ CH ₂ NO ₂ (3); O ₂ NCH ₂ HgCl;
		PhCOCH ₃
PhCH=NO2 ⁻	3	$PhCOCH_2CH(Ph)NO_2$ (7);
		$PhCH=C(Ph)NO_2$ (48);
		$PhCH(NO_2)CH(NO_2)Ph$ (11)
$PhC(Me) = NO_2^{-}$	3	$PhC(Me)(NO_2)C(Me)(NO_2)Ph (56);$
		PhC(Me) = C(Me)Ph (13)
$EtC(CO_2Et)_2^-$	2	$PhCOCH_2C(Et)(CO_2Et)_2$ (70)
MeC(CO ₂ Et) ₂ ⁻	2	$PhCOCH_2C(Me)(CO_2Et)_2$ (61)
$HC(CO_2Et)_2^{-1}$	6	$PhCOCH_2CH(CO_2Et)_2$ (27)
$PhC(CO_2Et)_2^-$	2	$PhCOCH_2CH(Ph)(CO_2Et)_2$ (21);
		$PhC(CO_2Et)_2C(CO_2Et)_2Ph$ (64)
$Me_3C(O) = CH_2$	4	$PhCOCH_2CH_2COCMe_3$ (37)
$PhC(O^{-}) = CMe_2$	2	PhCOCH ₂ CMe ₂ COPh (52)
PhC(O ⁻)=CHMe	4	$PhCOCH_2CH(Me)COPh$ (24)
PhC(O ⁻)=CHPh	3	PhCOCH(Ph)CH ₂ COPh (4);
		PhCOCH(Ph)CH(Ph)COPh (63)
$PhC(O^{-})=CPh_{2}$	2	$PhCOC(Ph)_2C(Ph)_2COPh$ (71)
$Ph_2C = C = N^-$	2	$Ph_2C(CN)C(CN)Ph_2$ (69)

^a Reactions performed in hexamethylphosphoric triamide under N_2 with photostimulation from a 275-W sunlamp ca. 15 cm from the Pyrex reaction flask. Reactions were performed on a 1-mmol scale with [PhCOCH₂HgCl] = [N⁻] = 0.1 M. ^bGenerated by the reaction of the conjugate acid with Me₃COLi. 'Yields determined by integrated ¹H NMR with an internal standard and/or by GC analysis with biphenyl as the internal standard.

The present report describes these reactions and some of the complications resulting from competing ionic reactions of the (benzoylmethyl)mercurials and electron transfer reactions of the benzoylmethyl radical.

- (2) Russell, G. A.; Hershberger, J.; Owens, K. J. Am. Chem. Soc. 1979, 101, 1312.
- (3) Russell, G. A.; Hershberger, J.; Owens, K. J. Organomet. Chem. 1982, 225, 43.
- (4) Russell, G. A.; Khanna, R. K. J. Am. Chem. Soc. 1985, 107, 1450.
 (5) Russell, G. A.; Khanna, R. K. Tetrahedron 1985, 41, 4133.
 (6) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. I.; Pla-Dalmau, A.;
 (7) Russell, G. A.; Guo, D.; Khanna, R. K. J. Org. Chem. 1985, 50, 3423.
 (8) Russell, G. A.; Khanna, R. K.; Guo, D. J. Chem. Soc., Chem. Commun. 1986, 632

 - (10) Giese, B.; Walling, C. Chem. Rev. 1950, 46, 191.
 (10) Giese, B.; Meixner, J. Angew. Chem., Int. Ed. Engl. 1979, 18, 154.
 (11) Minisci, F. NATO ASI Series C 1986, 189, 391.
- (12) Russell, G. A. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. 1, p 275. (13) Giese, B.; He, J.; Mehl, W. Chem. Ber. 1988, 121, 2063.

[†]Present address: Department of Chemistry, University of Southern Mississippi, Hattiesburg, MS 39401.

⁽¹⁾ Electron Transfer Process. 49. Work supported by the National Science Foundation (Grant CHE 8717871) and donors to the Petroleum Research Fund, administered by the American Chemical Society (Grant 18911-AC4)

Radical and Ionic Reactions of (Benzoylmethyl)mercurials

Results and Discussion

Reactions with Anions. (Benzoylmethyl)mercurials are readily attacked at the mercury atom by nucleophiles such as I^- , $(EtO)_2PO^-$, or $CH_2=NO_2^-$ to generate PhCOCH₃ and mercury salt.¹⁴ With some carbon-centered nucleophiles, a S_{RN} reaction has been observed (Scheme Ia),¹⁵ but with benzylic anions an oxidative dimerization

Scheme I

(a)
$$A^- = Me_2C = NO_2^-$$
, $PhC(O^-) = CH_2$

$$PhCOCH_2^{\bullet} + A^- \rightarrow PhCOCH_2A^{\bullet-}$$

 $PhCOCH_2A^{-} + PhCOCH_2HgCl \rightarrow$ PhCOCH₂A + PhCOCH₂HgCl⁻⁻ $PhCOCH_2HgCl^{-} \rightarrow PhCOCH_2^{-} + Hg^{\circ} + Cl^{-}$ (b) $A^- = PhC(O^-) = CPh_2$, $PhCH = NO_2^-$, $Ph_2P^ PhCOCH_2^{\bullet} + A^- \rightarrow PhCOCH_2^{-} + A^{\bullet}$ $A^{\bullet} + A^{-} \rightarrow A^{-}A^{\bullet-}$ $A-A^{-} + PhCOCH_2HgCl \rightarrow$ $A-A + PhCOCH_2 + Hg^\circ + Cl^-$

process occurs according to Scheme Ib.14 Table I summarizes the reaction products observed upon the photolysis of PhCOCH₂HgCl in the presence of a variety of nucleophiles in HMPA. Similar reactions but in lower yields were observed in Me₂SO while in HMPA the presence of 18crown-6 ether decreased the yield of the alkylation product.

Parts a and b of Scheme I both involve the reduction of PhCOCH₂HgCl by one electron to form the enolyl radical which possesses a considerably different selectivity and reactivity than the tert-butyl radical in reactions with nucleophiles.¹⁴ Thus, although t-Bu[•] can be trapped by P_2P^- with PhCOCH₂• leads to Ph_2P-PPh_2 via Scheme Ib.¹⁶ Ph_2P : (to yield *t*-BuPPh₂ by a S_{RN} process), reaction of

Electron transfer from adduct radical anions to simple alkylmercury halides occurs in a dissociative manner with a rate which increases with the stability of the incipient alkyl radical.^{17,18} Electron transfer to PhCOCH₂HgCl may involve PhCOCH₂HgCl⁻⁻ as an intermediate since radical ions such as PhCOCH₂Br⁻⁻ are known to exist and to undergo unimolecular elimination of Br⁻ with $k < 1 \times 10^6$ s⁻¹ at ambient temperature in CH₃CN.¹⁹ (p- $O_2NC_6H_4COCH_2Br^{-}$ decays with $k = 4 \times 10^4 \text{ s}^{-1}$ in H_2O and has a lifetime ~ 10 times greater than p- $O_2NC_6H_4CH_2Br^{-.20}$

Reactions with Trialkyl Phosphites. tert-Butylmercury chloride participates poorly in the photostimulated S_{RN} reaction with trialkyl phosphites. Reaction of (RO)₃P with PhCOCH₂HgCl occurred more efficiently (Scheme II), presumably because of a favorable polar effect

Scheme II ($R = PhCOCH_2$)

$$\mathbf{R}^{\bullet} + (\mathbf{MeO})_{3}\mathbf{P} \rightarrow \mathbf{R}\dot{\mathbf{P}}(\mathbf{OMe})_{3} \tag{1}$$

$$RP(OMe)_3 + RHgCl \rightarrow RP(OMe)_3^+ + RHgCl^{-}$$
 (2)

$$RHgCl^{\bullet-} \rightarrow R^{\bullet} + Hg^0 + Cl^-$$
(3)

$$Cl^- + RP(OMe)_3^+ \rightarrow MeCl + RP(O)(OMe)_2$$
 (4)

- (14) Russell, G. A.; Khanna, R. K. Adv. in Chemistry Series, Am. Chem. Soc. 1987, 215, 355.
 (15) Russell, G. A. Adv. Phys. Org. Chem. 1987, 23, 271.
 (16) Russell, G. A.; Khanna, R. K. Phosphorus Sulfur 1987, 29, 271.
 (17) Russell, G. A.; Jiang, W.; Hu, S. S.; Khanna, R. K. J. Org. Chem.
- (11) Russell, G. A. Acc. Chem. Res. 1989, 22, 1.
 (18) Russell, G. A. Acc. Chem. Res. 1989, 22, 1.
 (19) Penn, J. H.; Cox, E. D. J. Org. Chem. 1986, 51, 4447.
 (20) Behar, D.; Neta, P. J. Phys. Chem. 1981, 85, 690.

Table II. Photostimulated Reaction of Alkylmercurials with (MeO)₃P^a

	mmoles of	$RP(O)-(OMe)_{2},^{b}$	PhCOCH ₂ CH ₂ COPh
mercurial (mmol)	$(MeO)_{3}P$	%	$PhCOCH_2P(O)(OMe)_2$
t-BuHgCl (0.5)	2.5	<5	-
PhCOCH ₂ HgCl (0.5)	0.5	30	1.10
$PhCOCH_2HgCl (0.5)$	2.5	32	1.03
$PhCOCH_2HgCl$ (0.5)	10.0	37	0.81
PhCOCH ₂ HgCl (0.25)	1.25	40	0.73
PhCOCH ₂ HgCl (0.125)	0.625	44	0.57
PhCOCH ₂ HgCl (0.125)	2.5	42	0.60
PhCOCH ₂ HgCl (0.5)	2.5°	33°	0.97°
$(PhCOCH_2)_2Hg$ (0.5)	2.5	48	1.46

^aPhotolysis for 8 h in Rayonet 350-nm photoreactor in 5 mL of Me₂SO. ^bGC yield, mol of RP(O)(OMe)₂/mol of mercurial. ^c(EtO)₃P yielding PhCOCH₂P(O)(OEt)₂.

in the addition step (reaction 1) and a more favorable driving force for the electron transfer of reaction 2. Table II summarizes some pertinent experimental observations. The reaction of (benzoylmethyl)mercurials with trialkyl phosphites represents a simple route to (benzoylmethyl)phosphonates via an Arbuzov-type process following the electron-transfer step. Phenacyl halides react with $(RO)_3P$ or $(RO)_2PO^-$ to yield enol phosphates (Perkow Reaction) by what is formally nucleophilic attack upon the carbonyl oxygen (reaction 5), $^{21-24}$ although in some cases

with $(RO)_3P$ the keto phosphonate is a significant product. However, the keto phosphonate and the enol phosphate are not readily separated.¹⁶

The photostimulated reaction to form PhCOCH₂P- $(O)(OR)_2$ was accompanied by a side-reaction producing PhCOCH₂CH₂COPh (Table II), indicating a reaction of short kinetic chain length. Photolysis of PhCOCH₂HgCl in Me_2SO formed $PhCOCH_2CH_2COPh$ nearly quantitatively in the absence of (RO)₃P. Under standard conditions in Me_2SO-d_6 , the formation of $PhCOCH_2CH_2COPh$ was monitored by ¹H NMR. With $[PhCOCH_2HgCl]_0 =$ 0.1 M, the initial rate of formation of PhCOCH₂CH₂COPh was 2.7×10^{-5} M/s. In the presence of 0.02 M (t-Bu)₂NO[•], the appearance of PhCOCH₂CH₂COPh was delayed for 12 min, giving a rate of formation of PhCOCH₂ \cdot of 6 × 10⁻⁵ M/s. (This calculation is based on the assumption that $(t-Bu)_2NO^{\bullet}$ traps only PhCOCH₂. Photolysis of PhCOCH₂HgCl also produces *HgCl which may react with a second molecular of PhCOCH₂HgCl to form PhCOCH₂, HgCl₂, and Hg^{o.18}) The formation of PhCOCH₂CH₂COPh is obviously not a chain process, and very nearly one molecule of PhCOCH₂CH₂COPh is formed for every two radicals trapped by $(t-Bu)_2NO^{\bullet}$. With $(PhCOCH_2)_2Hg$, similar experiments demonstrated that 0.9 mol of the mercurial was photochemically decomposed (in the absence of nitroxide) for every two radicals trapped by the nitroxide.

The ratio of PhCOCH₂CH₂COPh/PhCOCH₂P(O)- $(OMe)_2$ was quite insensitive to the concentration of $(MeO)_{3}P$ (entries 2-4, 6, 7 of Table II) at constant

⁽²¹⁾ Lichtenthaler, F. W. Chem. Rev. 1961, 61, 607.

⁽²²⁾ Borowitz, I. J.; Arschel, M.; Firstenberg, S. J. Org. Chem. 1967, 32, 1723.

⁽²³⁾ Sturtz, G. Bull. Soc. Chim. Fr. 1964, 2333, 2340.

 ⁽²⁴⁾ Russell, G. A.; Ros, F. J. Am. Chem. Soc. 1985, 107, 2506.
 (25) Russell, G. A.; Mikol, G. J. In Mechanisms of Molecular Migration; Thyagarajan, B. S., Ed.; Interscience Publishers: New York, 1968; Vol. 1, p 157.

[PhCOCH₂HgCl]₀. On the other hand, the ratio increased with the initial concentration of PhCOCH₂HgCl. However, a doubling of [PhCOCH₂HgCl]₀ caused the ratio to increase (entries 3, 5, 6 of Table II) by only ~ 1.3 (i.e., $\sim 2^{1/2}$). Such a kinetic behavior is consistent with the steady state concentration of PhCOCH₂[•] being determined by an initiation process first-order in PhCOCH₂HgCl and a termination reaction second order in PhCOCH₂. However, the data would be consistent with Scheme II only if the steady state $[PhCOCH_2]$ was proportional to $[PhCOCH_2HgCl]^{1/2}[(MeO)_3P]$. This unusual behavior suggests an initiation reaction where rate is proportional to $[PhCOCH_2HgCl][(MeO)_3P]^2$. This in turn suggests the formation of complexes of the type PhCOCH₂Hg[P- $(OMe)_3$]+Cl⁻ and PhCOCH₂Hg[P(OMe)₃]₂+Cl⁻ with the latter being the main source of PhCOCH₂ upon photolysis. Further evidence for complexes of this type became evident from a study of the dark (ionic) reactions of PhCOCH₂HgCl with (RO)₃P in Me₂SO.

Ionic Reactions of PhCOCH₂**HgCl.** In the dark PhCOCH₂HgCl reacted slowly with $(MeO)_3P$ in Me₂SO to form the enol phosphate 1 (R = Me) and the enol ether derivative of dimethyl sulfide, 2. The mercury was mainly

$$PhC(=CH_2)OCH_2SCH_3$$

2

reduced to the Hg^o state while significant amounts of PhCOCH₃ and (MeO)₃PO were also formed, but no PhCOCH₂CH₂COPh was detected. The enol phosphate 1 was also formed in PhH or DMF in the dark. This Perkow-type product is probably not formed by nucleophilic attack at the carbonyl group because of the unfavorable polarity in PhCOCH₂^b-...HgCl^{b+}. Instead, we postulate nucleophilic attack of (RO)₃P at mercury followed by electrophilic attack at the carbonyl oxygen with the electron flow as described in **3** of reaction 6.

$$\begin{array}{c} Ph & C \stackrel{CH_2}{\longrightarrow} Hg \stackrel{CI}{\longrightarrow} Hg^\circ + PhC(=CH_2)OP(OR)_3^+CI^- \longrightarrow 1 \quad (6) \\ & & & \\ O & & & \\ & & & \\ O & & & \\ \end{array}$$

Product 2 is reminiscent of the Pummerer reaction observed for sulfoxides.¹⁹ However, sulfoxonium salts such as PhCOCH₂OSMe₂+X⁻ are known to undergo elimination to PhCOCHO rather than react via the Pummerer route.²⁶ PhCOCH₂HgCl in Me₂SO at 80 °C failed to form 2 in the absence of (MeO)₃P while in the presence of (EtO)₃P at 25 °C in Me₂SO, 1 (R = Et) but not 2 was formed. Furthermore, 2 was not formed when other proton acceptors such as Et₃N were substituted for (MeO)₃P.

Compound 2 is also formed in the rearrangement of PhCOCH₂SMe₂⁺ described by Ratts and Yao in a process thought to proceed via PhCOCH₂S(CH₃)==CH₂.²⁷ This suggests that in the presence of (MeO)₃P perhaps Me₂SO is deoxygenated to Me₂S which reacts to form 2. However, reaction of Me₂S with PhCOCH₂HgCl in Me₂SO failed to form 2 even in the presence of Et₃N as a proton acceptor. Reaction of Me₂S with PhCOCH₂HgCl and (MeO)₃P in DMF also did not form 2 although the enol phosphate 1 was formed. Finally, reaction of Me₂S and (MeO)₃P with PhCOCH₂HgCl in Me₂SO₂SCD₃ devoid of nondeuterated species under conditions where the recovered Me₂S had not undergone appreciably deuterium exchange.

The formation of 2 from PhCOCH₂HgCl and $(MeO)_3P$ in Me₂SO solution can be rationalized by the formation of a sulfoxonium intermediate 4 from the complex between $(MeO)_3P$ and the mercurial (reaction 7). Indeed the dark

PhCOCH₂HgP(OMe)₃OSMe₂⁺Cl⁻
$$\xrightarrow{-HCl}$$

4
Ph
CH₃
P(OMe)₃
2 + Hg° + (MeO)₃PO (7)

reaction yielding a mixture of 1 and 2 was accompanied by the formation of $(MeO)_3PO$. Acetophenone was also observed, but it is difficult to determine its source since acetophenone was formed in the aqueous thiosulfate workup employed to remove any unreacted mercurial before GC analysis or product isolation. However, the proton lost in converting 4 to the sulfur-ylide presumably leads to the formation of some PhCOCH₃ by electrophilic attack upon PhCOCH₂HgCl.

Reactions in Methanol Solution. In MeOH at -50 °C, the photostimulated formation of PhCOCH₂P(O)-(OMe)₂ from PhCOCH₂HgCl and (MeO)₃P was the major reaction pathway. However, with 5 equiv of (RO)₃P in the dark or upon irradiation at 25 °C in ROH (R = Me or Et), the phosphonate 5 was the major reaction product (24 h

$$PhC(OR)(CH_3)P(O)(OR)_2$$

5a, R = Me; b, R = Et

reaction period) accompanied by $(RO)_3PO$ and Hg°. In MeOH with $(EtO)_3P$, only 5a was detected, indicating that the mercurial had catalyzed a rapid alkoxy exchange in the trialkyl phosphite.

Reaction of $(PhCOCH_2)_2Hg$ with MeOH in the presence of $(MeO)_3P$ rapidly (5 min) formed PhCOCH₃. Acetophenone also accompanied **5a** in the reaction of PhCOCH₂HgCl, but only traces of PhC(OMe)₂CH₃ were detected after 24 h. Acetophenone in MeOH/(MeO)₃P in the presence of HgCl₂ or *p*-toluenesulfonic acid initially (5 min) formed PhC(OMe)₂CH₃, but with time **5a** was formed; with 10% PTSA after 24 h **5a** was the only product and was formed in essentially quantitative yield.

The methanolysis of (benzoylmethyl)mercurials is strongly catalyzed by trialkyl phosphites in an overall process giving oxidation [(RO)₃PO] and reduction (Hg°) products in the case of PhCOCH₂HgCl. One possible mechanism involves association of MeOH with the complex PhCOCH₂HgP(OR)₃+Cl⁻. This explains the rapid alkoxy exchange noted. The intermediate 6 could lead to acetophenone (reaction 8), which could react with general acid catalysis to form PhC(OMe)₂CH₃, which is slowly but irreversibly converted to 5a.

$$\begin{array}{c} PhCOCH_2 \longrightarrow Hg & CI^{-} \\ H \longrightarrow & -P \longrightarrow OMe \end{array} \xrightarrow{} PhCOCH_3 + Hg^{\circ} + (MeO)_3PO + MeCH_3 \\ & Me \longrightarrow & (8) \end{array}$$

Only traces of the enol phosphonate 1 were detected in the reactions of $PhCOCH_2HgCl/MeOH/(MeO)_3P$ or $PhCOCH_3/MeOH/(MeO)_3P/PTSA$. Methanolysis of $PhC(Me)(OSO_2Me)P(O)(OEt)_2$ in the presence of 2,6lutidine is reported to form $PhC(Me)(OMe)P(O)(OEt)_2$ and 1 in a 5:1 ratio,²⁸ but in the absence of base, 1 might be methanolyzed to acetophenone and $(MeO)_3PO$.

⁽²⁶⁾ Kornblum, N.; Powers, J. W.; Andersen, G. J.; Jones, W. J.; Larsson, H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562.

⁽²⁷⁾ Ratts, R. W.; Yao, A. N. J. Org. Chem. 1967, 33, 70.

⁽²⁸⁾ Creary, X.; Geiger, C. C.; Hilton, K. J. Am. Chem. Soc. 1983, 105, 2851.

Radical and Ionic Reactions of (Benzoylmethyl)mercurials

Reaction of PhCOCH₂HgCl with (RO)₂PO⁻. An excess of (RO)₂PO⁻ converts PhCOCH₂HgCl to PhCOCH₃ by nucleophilic attack at the mercury atom. Since products such as $PhC(=CH_2)OP(OR)_2$, $PhC(=CH_2)$ - OCH_2SCH_3 , and even $PhCOCH_2P(O)(OR)_2$ could be formulated as arising from further thermal or photochemical reactions of PhCOCH₂HgP(O)(OR)₂ (possibly formed from the decomposition of PhCOCH₂HgP(OR)₃⁺Cl⁻), we examined the products of a stoichiometric reaction of PhCOCH₂HgCl and (MeO)₂PO⁻. However, this reaction failed to produce the products observed upon reaction with (MeO)₃P. The reaction yielded after workup only acetophenone or upon photolysis a mixture of acetophenone and 1,4-diphenyl-1,4-butanedione. It does not appear that $PhCOCH_2HgP(O)(OMe)_2$ plays a significant role in the reactions involving (MeO)₃P.

Reactions of Benzoylmethyl Radicals with Pyrroles and Enamines. *tert*-Butylmercury halides will undergo a free-radical chain reaction with pyridines or pyridinium salts where the t-Bu[•] is trapped by PyH⁺ or Py···Hg(R)- $X.^{7,29}$ With PhCOCH₂HgCl these reactions are inefficient or do not occur at all. Conversely, t-BuHgCl fails to react with N-methylpyrrole while PhCOCH₂HgCl undergoes a regiospecific free-radical chain substitution process (Scheme III). Again, t-Bu[•] and PhCOCH₂[•] show dramatic differences in their reactivities toward the electron-poor pyridine complexes and the electron-rich pyrrole nucleus. Reaction of PhCOCH₂HgCl with 4 equiv of N-methylpyrrole in Me₂SO with fluorescent irradiation for 4 h formed after aqueous $Na_2S_2O_3$ workup, 0.20 equiv of the 2-(benzoylmethol)pyrrole, 0.42 equiv of acetophenone, and 0.07 equiv of PhCOCH₂CH₂COPh.

Enamines fail to undergo free-radical substitution reactions with t-BuHgCl/ $h\nu$ but react readily with PhCOCH₂HgCl upon irradiation (reaction 9). Reaction

of 1.1 equiv of 4-(1-cyclohexenyl)morpholine with PhCOCH₂HgCl in Me₂SO (10 h, 350-nm irradiation), followed by aqueous $Na_2S_2O_3/CH_2Cl_2$ extraction and heterogeneous hydrolysis of the CH2Cl2 extract, yielded 33% of acetophenone and 60% of 2-(benzoylmethyl)cyclohexanone in a very clean reaction that was free of PhCOCH₂CH₂COPh. The trimethylsilyl enol ether of cyclohexanone also reacted with PhCOCH₂HgCl upon photolysis to form the diketone after workup. However,

the yield was lower (12%) than for the enamine.

The free-radical chain substitution in enamines or pyrroles involves intermediate adduct radicals 7 or 8.

Radicals of the type $R_2N-C(R)_2$ are known to have unusually low oxidation potentials with $E_{1/2}^{\circ x}$ in the range of -1 V (sce).³⁰ The irreversible half-wave reduction potentials of alkylmercury halides are typically more positive than $-0.6 \text{ V}.^{31}$ There is thus considerable driving force for 7 or 8 to undergo electron transfer to PhCOCH₂HgCl. The low reactivity of electron-rich systems such as enamines or pyrroles towards t-Bu[•] is apparently connected with the electron-donating properties of t-Bu[•] where facile addition to electron-poor alkenes occurs because of a polar contribution to the transition state described by 9 (EWG = electron-withdrawing group). Conversely, addition of PhCOCH₂• to electron-rich systems such as enamines should occur because of stabilization from structure 10 (ESG = electron-supplying group). Other electrophilic

t-Bu⁺
$$\dot{C}H_2 - \dot{C}H(EWG)$$
 PhCOCH₂:- $\dot{C}H_2 - \dot{C}H(ESG)$
9 10

1

radicals such as fluorinated alkyl radicals are known to add to enamines to form adduct radicals capable of undergoing electron transfer to a variety of fluorohalocarbons.^{32,33} The electrophilic (EtO₂C)₂CH[•] is also reported to react with $CH_2 = C(NMe_2)Ph$ or the trimethylsilyl enol ether of cy $clohexanone.^{34}$ With a 5- to 10-fold excess of the alkene, the reaction of (EtO₂C)₂CHBr/Bu₃SnH/hv gave after hydrolysis (EtO₂C)₂CHCH₂COPh (16%) and 2-(dicarbethoxymethyl)cyclohexanone (59%).³⁴

Reactions of (Benzoylmethyl)mercurials with Norbornene. Photolysis (350 nm) of PhCOCH₂HgCl or (PhCOCH₂)₂Hg in Me₂SO or Me₂SO-PhH solvents with an excess of norbornene (typically 5 equiv) leads to the formation of 11a, PhCOCH₃, and small amounts of

PhCOCH₂CH₂COPh. With (PhCOCH₂)₂Hg, as much as 0.66 equiv of 11a was formed per mole of the mercurial, and the yield of PhCOCH₃ after workup was only 0.13 equiv. With PhCOCH₂HgCl, 11a was formed in 42% yield accompanied by 5% of $PhCOCH_3$ and 3% of PhCOCH₂CHCOPh. Significant amounts of a dihydro derivative of 11a were also observed by GCMS. In the presence of DABCO in Me₂SO, the dihydro derivative was

⁽²⁹⁾ Russell, G. A.; Guo, D.; Khanna, R. K. J. Org. Chem. 1985, 50, 3423.

⁽³⁰⁾ Hawari, J. A.; Kanabus-Kaminska, J. M.; Wayner, D. D. M.;
Griller, D. NATO ASI Series C 1986, 189, 91.
(31) Kurosowa, H.; Okada, H.; Hattori, T. Tetrahedron Lett. 1981, 22,

^{4495.}

 ⁽³²⁾ Cantacuzene, D.; Dorme, R. Tetrahedron Lett. 1975, 2037.
 (33) Rico, I.; Cantacuzene, D.; Wakselman, C. Tetrahedron Lett. 1981,

³⁴⁰⁵ (34) Giese, B.; Horler, H.; Leising, M. Chem. Ber. 1986, 119, 444.

not observed as a reaction product. Treatment with Jones reagent during workup also removed the dihydro compound.

Addition of PhCOCH₂• to norbornene forms a 3benzoylpropyl radical, which is known to cyclize under acidic oxidative conditions,³⁵ and similar cyclizations are known to occur for 3-benzimidoylpropyl radicals [PhC(= NH)CH₂CH₂C(Me)₂•] in acidic solution.³⁶ Scheme IV presents a rationalization for the formation of 11a in a reaction which is particularly clean in the presence of the base DABCO. The intermediate cyclohexadienyl radical has, of course, a strong driving force to lose a proton and form the aromatic ketyl which would serve as a powerful reducing agent for the (benzoylmethyl)mercurial.

The organomercurials 12b,c were synthesized in hopes that cyclization of the adduct radicals would occur by halogen atom elimination to form 11a. However the photolysis of 12b in the presence of norbornene produced

11b in 28% yield and only 8% of 11a while 12c yielded 11a (15%) and a small amount of 11c whose yield decreased with continued photolysis. Although the process involving cyclization by the elimination of a halogen atom was demonstrated, the regioselectivity of the cyclization step was poor. However, the general method for formation of α -tetralone derivatives from substituted or unsubstituted benzoylmethyl radicals under nonacidic conditions seems quite promising.

Experimental Section

General Methods. ¹H and ¹³C NMR spectra were obtained with a Nicolet NT-300 spectrometer in CDCl₃ with TMS as the internal standard. Mass spectra were obtained in the GC mode with a Finnigan 4000 with INCOS data system and in the highresolution mode with a Kratos MS-50 spectrometer. All melting points were determined with a Thomas-Hoover capillary melting point apparatus and are uncorrected. Analytical gas chromatography was performed with a Varian 3700 chromatograph with a Hewlett-Packard 3390A integrator employing calibration with an internal standard (usually biphenyl) and using 7% OV-3 as the stationary phase. Analytical thin-layer chromatography was performed on glass silica gel plates (Aldrich Chemical Co.) with UV detection. Chromatographic column purifications were performed on 40-140 mesh silica gel (J. T. Baker Co.). The purity of all title compounds was judged to be >95% since significant impurities could not be detected by GC or by $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR analyses.

Photostimulated reactions were carried out with solvents deoxygenated by nitrogen bubbling in flasks equipped with rubber septa and with irradiation by a 275-W fluorescent sunlamp (General Electric Co.) ca. 15 cm from the Pyrex reaction vessel or in a 350-nm Rayonet Photoreactor. Both irradiation sources maintained a reaction temperature of 35-40 °C. Dark reactions were performed in flasks wrapped in aluminum foil.

Materials. (2-Oxo-2-phenylethyl)mercury chloride was prepared according to the literature procedure using HgCl₂ in place of HgI₂ and had a mp of 145–146 °C.³⁷ (2-Oxocyclohexyl)mercury chloride, mp 134–135 °C, was made by the same procedure. [2-(o-Bromophenyl)-2-oxoethyl]mercury chloride was prepared by the same method: mp 122–126 °C; ¹H NMR (Me₂SO-d₆) δ 7.66–7.55 (m, 2 H), 7.43 (dt, 1 H, J = 7.5, 1.2 Hz), 7.34 (dt, 1 H, J = 7.5, 1.5 Hz), 3.01 (s, 2 H with ¹⁹⁹Hg satellites, J = 330 Hz). [2-(o-Iodophenyl)-2-oxoethyl]mercury chloride recrystallized from CH₂Cl₂-hexane had mp 99–100 °C; ¹H NMR (Me₂SO-d₆) δ 7.86 (d, 1 H, J = 7.5 Hz), 7.58 (d, 1 H, J = 7.5 Hz), 7.44 (t, 1 H, J = 7.5 Hz), 7.15 (t, 1 H, J = 7.5 Hz), 2.99 (s, 2 H with ¹⁹⁹Hg satellites, J = 330 Hz). 1-[(Trimethylsilyl)oxy]cyclohexene was prepared from Cyclohexanone.³⁸ All other reagents were obtained from Aldrich Chemical Co.

Dimethyl sulfoxide was distilled over CaH_2 under reduced pressure and stored over activated 4A molecular sieves. Benzene was distilled from sodium and methanol from Mg(OCH₃)₂. *N*-Methylpyrrole was distilled over CaH₂ under reduced pressure before use.

Solutions of anions in HMPA were prepared by treatment of the conjugate acid with 1 equiv of Me₃COLi under nitrogen. Similar yields of alkylation products were observed using Me₃COK. After deoxygenation for 15–30 min by nitrogen bubbling, the PhCOCH₂HgCl was added and irradiation commenced. Many of the benzylic carbanions yielded the dimerization products in high yield in the dark, presumably from a thermal electron transfer process.

Isolation Procedures. For the alkylation and oxidative dimerization reactions of Table I, product isolation involved treatment with 50–100 mL of 10% aqueous NaCl or 5% hydrochloric acid followed by Et_2O extraction. For the other alkylation reactions, the reaction mixture was diluted with 50 mL of CH₂Cl₂, a known amount of the GC standard (biphenyl) was added, and the resulting mixture was extracted three times with 15% aqueous Na₂S₂O₃ followed by water. The CH₂Cl₂ solution was dried over Na₂SO₄ and analyzed by GLC or evaporated to dryness, and the products were isolated by crystallization or column chromatography.

3-Methyl-1-phenyl-2-buten-1-one.³⁹ The isolated product had bp 88–90 °C (2 torr): ¹H NMR (CDCl₃) δ 8.2–7.8 (m, 2 H), 7.6–7.2 (m, 3 H), 6.72 (m, 1 H), 2.23 (d, 3 H), 2.00 (d, 3 H); IR (neat, cm⁻¹) 1623, 1674; GCMS m/z (rel intensity) 160 (M⁺, 97), 159 (100), 145 (75), 105 (90), 77 (97), 51 (59).

3-Nitro-1-phenyl-1-butanone. The product was obtained by chromatography with silica gel using PhH as eluent: ¹H NMR (CDCl₃) δ 8.1–7.8 (m, 2 H), 7.6–7.3 (m, 3 H), 4.92 (m, 1 H), 4.05–3.98 (m, 2 H), 1.58 (d, 3 H); IR (KBr pellet, cm⁻¹) 1690, 1450, 1380, 1370; MS m/z (rel intensity) calcd for C₁₀H₁₀O (M⁺ – HNO₂), 146.07289, found 146.07320 (19), 131 (18), 105 (100), 91 (1.6), 77 (48), 51 (16).

1-Nitro-1,2-diphenylethene. Recrystallization of the crude reaction product in hexane yielded *cis-a*-nitrostilbene as the major product: mp 71–73 °C (yellow needles) [lit.⁴⁰ mp 74–75 °C]; ¹H NMR (CDCl₃) δ 8.4–7.3; IR (KBr pellet, cm⁻¹) 1550; MS m/z (rel intensity) 225 (M⁺, 1), 179 (100), 152 (12), 102 (12), 89 (47), 76 (34), 51 (21), 46 (4).

2,3-Dinitro-2,3-diphenylbutane. The product was obtained as a mixture of diastereomers in a 2.5:1 ratio (¹H NMR) by crystallization of the crude reaction product from methanol-water. The mixture of isomers had mp 120-40 °C; ¹H NMR (CDCl₃) δ

⁽³⁵⁾ Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524.
(36) Forrester, A. R.; Gill, M.; Napier, R. J.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1 1979, 632.

⁽³⁷⁾ House, H. O.; Auerbach, R. A.; Martin, G.; Pect, N. P. J. Org. Chem. 1973, 38, 514.

⁽³⁸⁾ House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1964, 34, 2324.

⁽³⁹⁾ Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434.

⁽⁴⁰⁾ Freeman, J. P.; Stevens, T. E. J. Org. Chem. 1958, 23, 136.

8.10-7.05 (m), 2.32 (s), 2.20 (s); IR (KBr pellet, cm⁻¹) 1550, 1350. Repeated recrystallizations yielded the pure dl-isomer: mp 138-140 °C [lit.41 mp 138-140 °C]; 1H NMR (CDCl₃) δ 8.1-7.1 (m, 10 H), 2.30 (s, 6 H); IR (KBr pellet, cm⁻¹) 1550, 1350; HRMS m/z calcd for C₂₀H₁₆ (M⁺ - N₂O₄) 208.12528, found 208.12492. Diethyl (Benzoylmethyl)malonate.⁴² The product was

obtained by silica gel chromatography using PhH (75%)–CHCl₃ (25%) as eluent: ¹H NMR (CDCl₃) δ 8.1-7.2 (m, 5 H), 4.35-3.95 (m, 5 H), 3.02 (d, 2 H), 1.27 (t, 6 H); IR (neat, cm⁻¹) 1740, 1690; MS m/z (rel intensity) 278 (M⁺, 0.5), 233 (3), 187 (8), 173 (2), 105 (100), 77 (26), 55 (4).

Diethyl (Benzoylmethyl)methylmalonate. The product was isolated by chromatography using PhH-CHCl₃ as the eluent: ¹H NMR (CCl₄) δ 8.1–7.2 (m, 5 H), 4.2 (q, 4 H), 3.08 (s, 2 H), 1.66 (s, 3 H), 1.28 (t, 6 H); IR (KBr pellet, cm⁻¹) 1735, 1688; MS m/z(rel intensity) calcd for $C_{16}H_{20}O_5$ 292.13110, found 292.13068 (0.2), 247 (2), 173 (23), 105 (100), 77 (36), 51 (5).

Diethyl (Benzoylmethyl)ethylmalonate.43 The product was isolated by chromatography: ¹H NMR (CDCl₃) & 8.2-7.2 (m, 5 H), 4.18 (q, 4 H), 3.05 (s, 2 H), 2.02 (q, 2 H), 1.28 (t, 6 H), 0.95 (t, 3 H); MS m/z (rel intensity) 306 (M⁺, 0.2), 261 (13), 233 (1), (94), 141 (47), 120 (11), 105 (100), 77 (39), 51 (7).
 5,5-Dimethyl-1-phenyl-1,4-hexanedione.⁴⁴ The isolated

material had bp 135-136 °C (2 Torr): ¹H NMR (CCl₄) δ 8.05-7.75 (m, 2 H), 7.55-7.23 (m, 3 H), 3.26-2.64 (m, 4 H), 1.16 (s, 3 H); IR (CHCl₃, cm⁻¹) 1680; MS m/z (rel intensity) calcd for C₁₄H₁₈O₂ 218.13074, found 218.13022 (7), 105 (100), 77 (49), 51 (29).

1,4-Diphenyl-2-methyl-1,4-butanedione. The product was obtained by column chromatography using PhH (50%)-CHCl₃ (50%): mp 101-102 °C; ¹H NMR (CDCl₃) δ 8.3-7.3 (m, 10 H), 1.27 (d, 3 H), ABX for $-\text{CHCH}_{2^-}$, with $\delta_A = 3.05$, $\delta_B = 3.76$, $\delta_X = 4.20$ ($J_{AX} = 5$ Hz, $J_{BX} = 8$ Hz, $J_{AB} = 18$ Hz); IR (KBr pellet, cm⁻¹) 1599, 1617; HRMS calcd for C₁₇H₁₆O₂ 252.11508, found 252.11467.

2.2-Dimethyl-1,4-diphenyl-1,4-butanedione. The product was obtained by chromatography using PhH (50%)–CHCl₃ (50%) as eluent: ¹H NMR (CDCl₃) δ 8.1–7.2 (m, 10 H), 3.08 (s, 2 H), 1.25 (s, 6 H); IR (KBr pellet, cm⁻¹) 1666, 1364; MS m/z (rel

intensity) 266 (M⁺, 4), 144 (6), 105 (100), 77 (42), 51 (14). 1,2-Dibenzoyl-1,1,2,2-tetraphenylethane. The product was obtained by recrystallization of the reaction product from PhH-MeOH: mp 146.5-147.5 °C [lit.45 mp 148-151 °C]; ¹H NMR $(CDCl_3) \delta 8.3-7.1$; IR (KBr pellet, cm⁻¹) 1665.

1,4-Diphenyl-1,4-butanedione. A solution of 0.5 mmol of PhCOCH₂HgCl in 5 mL of Me₂SO was photolyzed in a Rayonet Photoreactor for 8 h at \sim 35 °C to give 78% of 1,4-diphenyl-1,4-butanedione after silica gel chromatography using hexane (80%)-ethyl acetate (20%) as eluent: ¹H NMR (CDCl₃) δ 8.04 (d, 4 H, J = 7 Hz), 7.57 (t, 2 H, J = 7 Hz), 7.47 (t, 4 H, J = 7 Hz),3.46 (s, 4 H); MS m/z (rel intensity) 238 (M⁺, 12), 133 (10), 105 (100), 77 (38).

Dimethyl (Benzoylmethyl)phosphonate.46 Solutions of PhCOCH₂HgCl and (MeO)₃P in Me₂SO (Table II) were photolyzed at 30 °C with a sunlamp for 17 h to give a mixture of PhCOCH₂P(O)(OMe)₂, PhCOCH₂CH₂COPh, (MeO)₃PO, and $PhCOCH_3$ (by GC). Pure $PhCOCH_2P(O)(OMe)_2$ was obtained by chromatography using hexane (40%)-ethyl acetate (60%) as eluent: ¹H NMR (CDCl₃) δ 8.00 (d, 2 H, J = 7.8 Hz), 7.60 (t, 1 H, J = 7.2 Hz), 7.48 (t, 2 H, J = 7.5 Hz), 3.78 (d, 6 H, ${}^{3}J_{P,H} = 11.4$ Hz), 3.65 (d, 2 H, ${}^{2}J_{P,H} = 22.5$ Hz); MS m/z (rel intensity) 228 (M⁺, 15), 200 (2), 151 (10), 105 (100), 91 (8), 77 (33).

Diethyl (Benzoylmethyl)phosphonate.46 Irradiation (350 nm) of 0.50 mmol of PhCOCH₂HgCl and 2.5 mmol of (EtO)₃P in 5 mL of Me₂SO for 8 h gave 0.08 mmol of PhCOCH₂CH₂COPh and 0.17 mmol of PhCOCH₂P(O)(OEt)₂ having GCMS m/z (rel intensity) 256 (M⁺, 5), 211 (3), 146 (13), 120 (17), 105 (100), 77 (28).

Dimethyl 1-Phenylethenyl Phosphate (1, R = Me).^{22,47} Reaction of 0.50 mmol of PhCOCH₂HgCl and 2.5 mmol of (MeO)₃P in 5 mL of refluxing PhH for 2 h gave acetophenone (11%) and 1 (68%). No 1,4-diphenyl-1,4-butanedione was detected. Column chromatography on silica gel with ethyl acetate (25%)-hexane (75%) furnished pure 1: ¹H NMR (CDCl₃) δ 7.64–7.56 (m, 2 H), 7.42–7.32 (m, 3 H), 5.32 (t, 1 H, J = 3 Hz), 5.23 (t, 1 H, J = 3 Hz), 3.86 (d, 6 H, ${}^{3}J_{P,H} = 11.1$ Hz). Sunlamp irradiation of PhCOCH₂HgCl and (MeO)₃P (5 equiv) in PhH for 17 h produced $PhCOCH_3$, $PhCOCH_2P(O)(OMe)_2$, and PhCOCH₂CH₂COPh but not 1.

Dimethyl 1-Cyclohexenyl Phosphate.²² Reaction of 0.5 mmol of (2-oxocyclohexyl) mercury chloride with 2.5 mmol of (MeO)₃P in 5 mL of Me₂SO for 20 min yielded 95% of the cyclohexanone enol phosphate: ¹H NMR (CDCl₃) δ 5.45-5.37 (m, 1 H), 3.73 (d, 6 H, ${}^{3}J_{P,H}$ = 11.1 Hz), 2.20–2.07 (m, 2 H), 2.05–1.95 (m, 2 H), 1.70–1.60 (m, 2 H), 1.55–1.40 (m, 2 H); GCMS m/Z (rel intensity) 206 (M⁺, 13), 127 (100), 109 (15), 97 (12), 79 (39).

[1-[(Methylthio)methoxy]ethenyl]benzene (2).27 A mixture of 0.50 mmol of PhCOCH₂HgCl and 2.5 mmol of (MeO)₃P in 5 mL of Me₂SO was stirred in the dark at 25 °C for 48 h to give after workup PhCOCH₃ (53%), 1 (13%), and 2 (25%). Pure 2 was obtained by column chromatography using ethyl acetate (4%)-hexane (96%) as eluent: ¹H NMR (CDCl₃) δ 7.68-7.60 (m, 2 H), 7.38–7.26 (m, 3 H), 5.02 (s, 2 H), 4.81 (d, 1 H, J = 3 Hz), 4.29 (d, 1 H, J = 3 Hz), 2.27 (s, 3 H); ¹³C NMR (CDCl₃) δ 158.30, 135.98, 128.51, 128.06, 125.34, 84.90, 71.86, 15.01; MS m/z calcd for M⁺ 180.06089, found 180.06174.

Dimethyl 1-Methoxy-1-phenylethyl Phosphate (5a). A mixture of 0.5 mmol of PhCOCH₂HgCl and 2.5 mmol of (MeO)₃P in 5 mL of CH₃OH was stirred in the dark for 48 h at 25 °C. Workup gave PhCOCH₃ (16%) and 5a (51%). No 1,4-diphenyl-1,4-butanedione or enol phosphate (1) was observed. Pure 5a was isolated by column chromatography using ethyl acetate (50%)-hexane (50%) as eluent: ¹H NMR (CDCl₃) δ 7.52 (d, 2 H, J = 6.9 Hz), 7.39 (t, 2 H, J = 7.2 Hz), 7.32 (t, 1 H, J = 6.9 Hz), 3.68 (d, 3 H, ${}^{3}J_{P,H} = 10.2$ Hz), 3.63 (d, 3 H, ${}^{3}J_{P,H} = 10.5$ Hz), 3.22 (s, 3 H), 1.87 (d, 3 H, ${}^{3}J_{P,H} = 15.9$ Hz); ${}^{13}C$ NMR (CDCl₃) δ 137.60, 128.07, 127.82, 127.62, 79.19 (d, $J_{P,C} = 168$ Hz), 53.85 (d, $J_{P,C} = 6.5$ Hz), 50.19 (d, $J_{P,C} = 12.6$ Hz), 18.73; MS m/z calcd for M⁺ 244.08645, found 244.08667.

N-Methyl-2-(benzoylmethyl)pyrrole. A mixture of 0.50 mmol of PhCOCH₂HgCl and 2.0 mmol of N-methylpyrrole in 5 mL of Me₂SO was irradiated at 350 nm for 4 h. Workup yielded PhCOCH₃ (42%), PHCOCH₂CH₂COPh (7%), and 20% of the substituted pyrrole. A pure sample of N-methyl-2-(benzoylmethyl)pyrrole was obtained by chromatography with ethyl acetate (10%)-hexane (90%) as eluent: ¹H NMR (CDCl₃) & 8.02 (d, 2 H, J = 7.2 Hz), 7.57 (t, 1 H, J = 7.5 Hz), 7.46 (t, 2 H, J =7.5 Hz), 6.61 (t, 1 H, J = 2.4 Hz), 6.08 (t, 1 H, J = 3 Hz), 6.05–5.95 (m, 1 H), 4.26 (s, 2 H), 3.55 (s, 3 H); ^{13}C NMR (CDCl₃) δ 196.35, 136.21, 133.22, 128.58, 128.48, 125.27, 122.53, 108.90, 107.03, 37.07, 34.07; MS m/z calcd for M⁺ 199.09972, found 199.09904.

Reaction of PhCOCH₂HgCl with N-Morpholino-1-cyclohexene To Form 2-(Benzoylmethyl)cyclohexanone. Photolysis (350 nm) of 0.50 mmol of the enamine and 0.55 mmol of PhCOCH₂HgCl in 5 mL of Me₂SO for 10 h yielded metallic mercury. Workup with aqueous Na₂S₂O₃ yielded a CH₂Cl₂ solution whose GCMS was consistent with the substitution of PhCOCH₂ for the vinyl hydrogen atom: m/z (rel intensity) 285 (M⁺, 8), 200 (3), 180 (100), 165 (31), 105 (12), 77 (14). Hydrolysis of the extract with 20 mL of 1 M hydrochloric acid for 30 min yielded 2-(benzoylmethyl)cyclohexanone (60%) and acetophenone (33%). The 2-(benzoylmethyl)cyclohexanone isolated by column chromatography had the following NMR properties: ¹H NMR $(CDCl_3) \delta 7.99 (d, 2 H, J = 7.2 Hz), 7.56 (t, 1 H, J = 7.5 Hz), 7.46$ (t, 2 H, J = 7.5 Hz), 3.61 (dd, 1 H, J = 17.7, 6.6 Hz), 3.18 (sextet, 1 H, J = 6.3 Hz), 2.69 (dd, 1 H, J = 17.7, 5.7 Hz), 2.45 (q, 2 H, J = 4.5 Hz), 2.27–2.00 (m, 2 H), 1.95–1.58 (m, 3 H), 1.45 (dq, 1 H, J = 12.6, 3.9 Hz). The same ¹H NMR was observed from the diketone synthesized from the enamine and phenacyl bromide.

Reaction of PhCOCH₂HgCl with the Trimethylsilyl Enol Ether of Cyclohexanone. Photolysis (350 nm) of 0.5 mmol of

⁽⁴¹⁾ Pagano, A. H.; Schechter, H. J. Org. Chem. 1970, 35, 295.

⁽⁴²⁾ Ray, R. M.; Ray, J. N. J. Chem. Soc. 1925, 127, 2721.
(43) Dittrich, A.; Paal, C. Chem. Ber. 1888, 21, 3451.
(44) Schulz, G.; Gruber, P.; Steglich, W. Chem. Ber. 1979, 112, 3221.
(45) Lowenbein, A.; Schuster, L. Justus Leibigs Ann. Chem. 1930, 481, 106

⁽⁴⁶⁾ Imaev, M. G.; Shakirova, A. M.; Shirmanova, E. P.; Kas'yanova, E. K. Zh. Ohshch. Khim. 1964, 34, 3950.

⁽⁴⁷⁾ Gaydou, E. M.; Freeze, R.; Buono, G. Bull. Soc. Chim. Fr. 1973, 2284

PhCOCH₂HgCl in the presence of 2.5 mmol of the enol ether for 22 h in 5 mL of PhH (90%)–Me₂SO (10%) gave after workup 12% of 2-(benzoylmethyl)cyclohexanone, 13% of PhCOCH₂CH₂COPh, and 14% of PhCOCH₃.

2,3,4,4a,10,10a-Hexahydro-(1α,4α,4aα,10aα)-1H-1,4methanophenanthren-9-one (11a). A mixture of 0.5 mmol of PhCOCH₂HgCl and 2.5 mmol of norbornene in 5 mL of PhH (90%)-Me₂SO (10%) was irradiated at 350 nm for 16 h. Workup yielded 11a (42%), PhCOCH₃ (5%), and 1,4-diphenyl-1,4-butanedione (3%). Pure 11a was obtained by column chromatography with ethyl acetate (5%)-hexane (95%) as eluent: ¹H NMR $(CDCl_3) \delta$ 7.78 (dd, 1 H, J = 7.5, 1.2 Hz), 7.50 (dt, 1 H, J = 7.5, 1.5 Hz, 7.32 (d, 1 H, J = 7.5 Hz), 7.26 (t, 1 H, J = 7.5 Hz), 3.05 Hz(d, 1 H, J = 8.4 Hz), 2.72 (dd, 1 H, J = 15.6, 9.0 Hz), 2.50 (dd, 1 Hz),1 H, J = 15.6, 4.2 Hz, 2.40–2.30 (m, 1 H), 2.24 (br s, 1 H), 2.10 (br s, 1 H), 1.74–1.48 (m, 3 H), 1.44–1.34 (m, 1 H), 1.26 (d, 1 H, J = 10.8 Hz), 1.01 (d, 1 H, J = 10.8 Hz); ¹³C NMR (CDCl₃) δ 199.97, 145.43, 133.75, 133.27, 129.12, 125.79, 125.06, 46.89, 45.58, 44.79, 42.04, 39.44, 32.60, 30.00, 29.50; MS m/z calcd for M⁺ 212.12012, found 212.12049.

Reaction of o-BrC₆H₄COCH₂HgCl with Norbornene: Formation of 11a,b. Photolysis (350 nm) of 0.50 mmol of o-BrC₆H₄COCH₂HgCl with 5 mmol of norbornene in 5 mL of Me₂SO for 17 h yielded 8% of 11a and 28% of 11b. The o-bromotetralone derivative 11b had a GCMS, m/z (rel intensity) 292 (M⁺, 36), 290 (M⁺, 37), 225 (60), 224 (88), 223 (73), 222 (78), 143 (26), 128 (21), 115 (100).

Reaction of o-IC₆H₄COCH₂HgCl with Norbornene: Formation of 11a,c. Photolysis of 0.50 mmol of the mercurial and 5.0 mmol of norbornene in 5 mL of Me₂SO at 350 nm for 22 h yielded after workup 15% of 11a and a small amount of 11c: GCMS m/z (rel intensity) 338 (M⁺, 100), 271 (67), 270 (96), 144 (20), 128 (19), 127 (7), 115 (73).

Registry No. 1 (R = Me), 4202-12-4; 2, 14439-02-2; 5a, 124316-33-2; 11a, 124375-87-7; 11b, 124286-47-1; 11c, 124286-48-2; PhCOCH₂HgCl, 28531-58-0; Me₂CHNO₂, 79-46-9; MeCH₂NO₂,

79-24-3; H₃CNO₂, 75-52-5; PhCH₂NO₂, 622-42-4; PhCH(Me)NO₂, 7214-61-1; EtCH(CO₂Et)₂, 133-13-1; MeCH(CO₂Et)₂, 609-08-5; H₂C(CO₂Et)₂, 105-53-3; PhCH(CO₂Et)₂, 83-13-6; Me₃COCH₃, 75-97-8; PhCOCHMe₂, 611-70-1; PhCOCH₂Me, 93-55-0; PhCOCH₂Ph, 451-40-1; PhCOCHPh₂, 1733-63-7; Ph₂CHC=N, 86-29-3; PhCOCH₂CMe₂NO₂, 124286-37-9; PhCOCH=Me₂, 5650-07-7; PhCOCH₂CHMeNO₂, 7404-78-6; PhCOCH=C(Me)-NO₂, 124286-38-0; PhCO(CH₂)₂NO₂, 62847-52-3; O₂NCH₂H₈Cl, 124286-39-1; PhCOCH2CH(Ph)NO2, 124286-40-4; PhCH=C-(Ph)NO₂, 1215-07-2; PhCH(NO₂)CH(NO₂)Ph, 67765-80-4; (S,-S)-PhC(Me)(NO₂)C(Me)(NO₂)Ph, 124286-41-5; (R,S)-PhC-(Me)(NO₂)C(Me)(NO₂)Ph, 22486-14-2; PhCOCH₂C(Et)(CO₂Et)₂, 124286-42-6; $PhCOCH_2C(Me)(CO_2Et)_2$, 124286-43-7; $PhCOCH_2CH(CO_2Et)_2$, 94011-49-1; $PhCOCH_2CH(Ph)(CO_2Et)_2$, 124286-44-8; PhC(CO₂Et)₂C(CO₂Et)₂Ph, 117720-83-9; PhCO-(CH₂)₂COCMe₃, 56079-45-9; PhCOCH₂CMe₂COPh, 124286-45-9; PhCOCH₂CH(Me)COPh, 15982-59-9; PhCOCH(Ph)CH₂COPh, 4441-01-4; PhCOCH(Ph)CH(Ph)COPh, 10516-92-4; PhCOC-(Ph)₂C(Ph)₂COPh, 113680-01-6; Ph₂C(CN)C(CN)Ph₂, 3122-21-2; (MeO)₃P, 121-45-9; PhCOCH₂P(O)(OMe)₂, 1015-28-7; (PhCOCH₂)₂Hg, 37160-45-5; PhCOCH₂P(O)(OEt)₂, 3453-00-7; (EtO)₃P, 122-52-1; Ph-CO(CH₂)₂COPh, 495-71-6; o-BrC₆H₄COCH₂HgCl, 124286-49-3; o-IC₆H₄COCH₂HgCl, 124286-50-6; dimethyl 1-cyclohexenyl phosphate, 3719-53-7; (2-oxocyclohexyl)mercury chloride, 14839-64-6; N-methyl-2-(benzolmethyl)pyrrole, 124286-46-0; N-methylpyrrole, 96-54-8; Nmorpholino-1-cvclohexene, 670-80-4; 2-(benzovlmethyl)cvclohexanone, 33553-23-0; cyclohexanone trimethylsilyl enol ether, 6651-36-1; norbornene, 498-66-8.

Supplementary Material Available: NMR spectra of PhCOCH₂P(O)(OMe)₂ (¹H), PhC(OMe)(Me)P(O)(OMe)₂ (¹H, ¹³C), PhC(=CH₂)OP(O)(OMe)₂ (¹H), PhC(=CH₂)OCH₂SCH₃ (¹H, ¹³C), N-methyl-2-(benzoylmethyl)pyrrole (¹H, ¹³C), and 11a (¹H, ¹³C) (17 pages). Ordering information is given on any current masthead page.

Stereochemistry of the Intermolecular and Intramolecular Conjugate Additions of Amines and Anions to Chiral (E)- and (Z)-Vinyl Sulfoxides. Total Syntheses of (R)-(+)-Carnegine and (+)- and (-)-Sedamine¹

Stephen G. Pyne,* Peter Bloem, Sandra L. Chapman, Christine E. Dixon, and Renate Griffith

Department of Chemistry, University of Wollongong, PO Box 1144, Wollongong, N.S.W. 2500, Australia

Received June 15, 1989

The intramolecular addition of incipient amine anions to chiral (E)- and (Z)-vinyl sulfoxides occurs in the same diastereofacial sense, giving chiral isoquinoline and piperidine derivatives that differ in relative stereochemistry at C-2. In contrast, the conjugate addition reactions of (E)- and (Z)- β -styryl *p*-tolyl sulfoxide with benzylamine and LiCH(CO₂Et)₂ are diastereoconvergent processes. The same major diastereomeric product is obtained in each case. We have attempted to rationalize the stereochemical outcome of the addition of nucleophiles to chiral vinyl sulfoxides according to the type of nucleophilic reagent employed (either chelating/hydrogen bonding or nonchelating) and from a consideration of possible transition states.

The addition of nucleophiles to chiral vinyl sulfoxides has proven to be a useful method for the asymmetric synthesis of chiral molecules and natural products.^{2,3} A detailed understanding of the steric and electronic factors that control the stereochemical course of these reactions, however, remains unclear. Recent theoretical calculations

⁽¹⁾ Chiral Sulfur Compounds. Part 9. Part 8: Pyne, S. G.; Dikic, B. J. Chem. Soc., Chem. Commun. 1989, 826-827.

⁽²⁾ For intramolecular examples see: (a) Hansen, J. J.; Kjaer, A. Acta. Chem. Scand., Ser. B 1974, 28, 418-424. (b) Pyne, S. G.; Chapman, S. L. J. Chem. Soc., Chem. Commun. 1986, 1688-1689. (c) Pyne, S. G.; Tetrahedron Lett. 1987, 28, 4737-4740. (d) Solladie, G.; Moine, G. J. Am. Chem. Soc. 1984, 106, 6097-6098. (e) Iwata, C.; Fujita, M.; Hattori, K.; Uchida, S.; Imanishi, T. Tetrahedron Lett. 1985, 26, 2221-2224. (f) Hirama, M.; Hioki, H.; Ito, S.; Kabuto, C. Tetrahedron Lett. 1988, 29, 3121-3124. (g) Iwata, C.; Fujita, M.; Moritani, Y.; Hattori, K.; Imanishi, T. Tetrahedron Lett. 1987, 28, 3135-3138, and references therein.

⁽³⁾ For intermolecular examples see: (a) Abbot, D. J.; Colonna, S.; Stirling, C. J. M. J. Chem. Soc., Chem. Commun. 1971, 471. (b) Abbot, D. J.; Colonna, S.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. 1 1976, 492-498. (c) Tsuchihashi, G.; Mitamura, S.; Inove, S.; Ogura, K. Tetrahedron Lett. 1973, 323-326. (d) Tsuchihashi, G.; Mitamura, S.; Ogura, K. Tetrahedron Lett. 1976, 855-858. (e) Posner, G. H. Acc. Chem. Res. 1987, 20, 72-78. (f) Holton, R. A.; Kennedy, R. M.; Kim, H.; Krafft, M. E. J. Am. Chem. Soc. 1987, 109, 1597-1600. (g) Pyne, S. G.; Griffith, R.; Edwards, M. Tetrahedron Lett. 1988, 29, 2089-2092. (h) Davis, R.; Kern, J. R.; Kurz, L. J.; Pfister, J. R. J. Am. Chem. Soc. 1988, 110, 7873-7874. (i) Takaki, K.; Maeda, T.; Ishikawa, M. J. Org. Chem. 1989, 54, 58-62.